Matrix reorganization with intramolecular tunneling of H atom: formic acid in Ar matrix.

نویسندگان

  • Leonid I Trakhtenberg
  • Anatoly A Fokeyev
  • Alexander S Zyubin
  • Alexander M Mebel
  • S H Lin
چکیده

The intramolecular tunneling of hydrogen atom in formic acid HCOOH at low temperatures is considered based on literature experimental data on C-O internal rotation. The energetic and geometric parameters as well as vibrational frequencies for formic acid in cis and trans configurations surrounded by 12 Ar atoms are calculated in the frame of the MP2 approach with extended basis sets. The temperature and pressure dependence of the rate constant is analyzed taking into consideration the matrix reorganization for the Debye model of lattice motion. It has been shown that the available experimental data can be explained by the suggested matrix reorganization mechanism. Theoretical expressions for the temperature dependence of the rate constant agree well with the experimental data on the cis to trans tunneling reactions in formic acid with fitting parameters attaining reasonable values. A mechanism describing pressure dependence of the rate constant for H-atom intramolecular tunneling reactions is also proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of the medium on intramolecular H-atom tunneling: cis-trans conversion of formic acid in solid matrixes of noble gases.

Intramolecular tunneling of a hydrogen atom in formic acid at low temperatures has been studied theoretically on the basis of quantum-chemical modeling of HCOOH@Nb(12) clusters. Three noble matrixes (Ar, Kr, and Xe) are considered. Energetic and geometric parameters as well as vibrational frequencies for the formic acid in cis and trans configurations surrounded by 12 Nb atoms are calculated wi...

متن کامل

Infrared-induced conformational interconversion in carboxylic acids isolated in low-temperature rare-gas matrices

An overview of our recent studies dealing with infrared-induced conformational interconversion of carboxylic acids isolated in rare-gas matrices is presented. Extensive rotational photoisomerization studies have been performed on formic acid, which is the simplest organic acid enabling this kind of processes. Formic acid has two conformers and interconversion between them can be induced by vibr...

متن کامل

Reactions of HOCO radicals through hydrogen-atom hopping utilizing clathrate hydrates as an observational matrix.

The carboxyl (HOCO) radical, which is an important species in atmospheric chemistry and combustion, is an intermediate in the reaction: CO + OH → CO2 + H and serves as a hydrogen donor to the reaction partners. The cis-HOCO radical, one of the ground-state HOCO radicals, is supposed to be decomposed into CO2 and the hydrogen atom by a tunneling effect. In order to prove the hypothesis, we perfo...

متن کامل

Formic and acetic acids in a nitrogen matrix: Enhanced stability of the higher-energy conformer.

Formic acid (HCOOH, FA) and acetic acid (CH(3)COOH, AA) are studied in a nitrogen matrix. The infrared (IR) spectra of cis and trans conformers of these carboxylic acids (and also of the HCOOD isotopologue of FA) are reported and analyzed. The higher-energy cis conformer of these molecules is produced by narrowband near-IR excitation of the more stable trans conformer, and the cis-to-trans tunn...

متن کامل

Modeling and spectral simulation of matrix-isolated molecules by density functional calculations: a case study on formic acid dimer.

The supermolecule approach has been used to model molecules embedded in solid argon matrix, wherein interaction between the guest and the host atoms in the first solvation shell is evaluated with the use of density functional calculations. Structural stability and simulated spectra have been obtained for formic acid dimer (FAD)-Ar(n) (n = 21-26) clusters. The calculations at the B971∕6-31++G(3d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 130 14  شماره 

صفحات  -

تاریخ انتشار 2009